Consulta por: Publicación seriada
Autor: Álvarez, Hugo (Comienzo)
Sólo un registro cumplió la condición especificada en la base de información BIOAGRO. ()
Portada
Artículos en éste númeroArtículos en éste número
Autor: Sarmiento, Leidy leidy.sarmiento@iniap.gob.ec
Oprima aquí para enviar un correo electrónico a esta dirección; Pérez Almeida, Iris ; Díaz, Byron ; Álvarez, Hugo ; Viera, William ; Pérez Almeida, Iris ; Díaz, Byron ; Álvarez, Hugo ; Viera, William
Título: MOLECULAR MARKER-BASED CHARACTERIZATION OF ECUADORIAN DRY FOREST TAMARIND PLUS TREES
CARACTERIZACIÓN MOLECULAR DE ÁRBOLES ÉLITE DE TAMARINDO DEL BOSQUE SECO ECUATORIANO
ISSN: 1316-3361
Fecha: 2017
Páginas/Colación: pp. 153-162
En:/ BIOAGRO Vol 29 Nro.3 Septiembre - Diciembre 2017
Información de existenciaInformación de existencia
Categoría Temática: Palabras: AGR01 AGR01
Palabras Claves del Autor: Palabras: ISSR ISSR, Palabras: MARCADORES MOLECULARES MARCADORES MOLECULARES, Palabras: MEJORAMIENTO DE FRUTALES MEJORAMIENTO DE FRUTALES, Palabras: Tamarindus indica Tamarindus indica
Documentos asociados
Oprima aquí para visualizar el documento PDF:Documento en formato PDF Documento en formato PDF

RESUMEN
ABSTRACT
To improve the potential of tamarind as an economically valued domesticated species it is important to characterize its variability in Ecuador for breeding purposes. Our aim was to investigate the genetic diversity of 32 tamarind plus trees using inter-simple sequence repeat (ISSR) markers. Eighty four loci were examined using 12 markers, with a mean number of 4.42 loci per primer; 8 loci (9.52 %) were monomorphic and 76 (90.48 %) polymorphic, revealing genetic variability among the individuals. Polymorphic information content (PIC) values varied from 0.29 (ISSR_808) to 0.93 (ISSR_HB12), whereas the marker index ranged from to 26.4 (ISSR_814) to 62.5 (ISSR_17899A). Primers ISSR_HB11, ISSR_836, ISSR_842, ISSR_848, ISSR_860, ISSR_17899A and ISSR_17899B were useful to discriminate the grouping of the accessions according to their PIC values. Ward cluster analysis grouped accessions into two major groups with five subgroups with 46 % similarity according to Jaccard distance. The genotypes from Loja, Manabí and Guayas provinces were grouped in the first cluster; while only individuals from Manabí located in the other group, indicating major diversity in the latter province. Genotypes T1-ECUM-001 and T1-ECUM-002 presented 76 % similarity, while T1-ECUM-008, T1-ECUM-010, T1-ECUM-012, T1-ECUM-017 and T1-ECUM-018 shared 60 %. All materials from Loja grouped with 65 % similarity. Other genotypes clustered with similarity of 54 %. The cophenetic correlation coefficient (0.634) showed a good fit between the data matrix and the dendrogram results. A reasonable degree of diversity was found among tamarind genotypes potentially useful to select plus trees for clonal propagation as well as to identify diverse parents for hybridization programs.
Additional key words: Fruit tree breeding, ISSR, molecular markers, Tamarindus indica

RESUMEN
Para aumentar el potencial del tamarindo como especie domesticada con valor económico es importante caracterizar la variabilidad en Ecuador con propósitos de mejoramiento. Nuestro objetivo fue investigar la diversidad genética de 32 árboles élite de tamarindo utilizando marcadores de secuencia inter-simple repetida (ISSR). Se examinaron 84 loci con 12 marcadores, con un número promedio de 4,42 loci per primer; 8 loci (9,52 %) fueron monomórficos y 76 (90,48 %) polimórficos, revelando variabilidad genética entre individuos. El contenido de información polimórfica (PIC) osciló entre 0,29 (ISSR_808) y 0,93 (ISSR_HB12), mientras que el índice de marcador fluctuó entre 26,4 (ISSR_814) y 62,5 (ISSR_17899A). ISSR_HB11, ISSR_836, ISSR_842, ISSR_848, ISSR_860, ISSR_17899A e ISSR_17899B fueron útiles para discriminar accesiones según sus CIPs. El análisis de conglomerados de Ward formó dos grupos principales y cinco subgrupos con 46 % de similitud según la distancia de Jaccard. Genotipos de Loja, Manabí y Guayas se aglomeraron en un grupo; mientras que sólo accesiones de Manabí quedaron en el otro, indicando mayor diversidad en la última provincia. Los genotipos T1-ECUM-001 y T1-ECUM-002 presentaron 76 % similitud, mientras T1-ECUM-008, T1-ECUM-010, T1-ECUM-012, T1-ECUM-017 y T1-ECUM-018 compartieron 60 %. Todos los materiales de Loja se agruparon con 65 % de similitud. Otros genotipos se concentraron con similitud de 54 %. El coeficiente de correlación cofenética (0,634) mostró buen ajuste entre la matriz de datos y los resultados del dendrograma. Se encontró un grado razonable de diversidad entre los genotipos de tamarindo potencialmente útil para seleccionar árboles élite para propagación clonal así como para identificar progenitores diversos para programas de hibridación.
Palabras claves adicionales: ISSR, marcadores moleculares, mejoramiento de frutales, Tamarindus indica

REFERENCIAS BIBLIOGRAFICAS
1. Abdel-Hameed, U.K., U.I. El-Magly, I.F. Ishak and M.E. Tantawy. 2013. A contribution to the speci?cation of Caesalpinioideae (L) based on morphological and molecular criteria. Beni-Suef University Journal of Basic and Applied Sciences 2(1): 120-127.
2. Algabal, A.Q.A.Y., N. Papanna and L. Simon. 2011. Amplified fragment length polymorphism marker-based genetic diversity in tamarind (Tamarindus indica L.). International Journal of Fruit Science 11(1): 1-16.
3. Algabal, A.Q.A.Y., N. Papanna and L. Simon. 2010. Estimation of genetic variability in tamarind (Tamarindus indica L.) using RAPD markers. International Journal of Plant Breeding 5(1): 10-16.
4. Cervera, M.T., I. Rodriguez, J.A. Cabezas, J. Chávez, J.M. Martínez-Zapater and F. Cabello. 2001. Morphological and molecular characterization of grapevine accessions known as albillo. American Journal of Enology and Viticulture 52: 127-135.
5. Dhanraj, A.L., E.V.V.B. Rao, K.R.M. Swamy, M.G. Bhat, T. Prasad and S.N. Sondur. 2002. Using RAPDs to assess the diversity in Indian cashew (Anacardium occidentale L.) germplasm. Journal of Horticultural Science and Biotechnology 77: 41-47.
6. Diallo, B.O., H.I. Joly, D. Mckey, M. Hossaert-Mckey and M.H. Chevallier. 2007. Genetic diversity of Tamarindus indica populations: Any clues on the origin from its current distribution? African Journal of Biotechnology 6(7): 853-860.
7. Diallo, B.O., D. Mckey, M. Chevallier, H.I. Joly and M. Hossaert-Mckey. 2008. Breeding system and pollination biology of the semidomesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae): Implications for fruit production, selective breeding, and conservation of genetic resources. African Journal of Biotechnology 7(22): 4068-4075.
8. Doughari, J.H. 2006. Antimicrobial Activity of Tamarindus indica Linn. Tropical Journal of Pharmaceutical Research 5(2): 597-603.
9. El-Siddig, K., H.P.M. Gunasena, B.A. Prasad, D.K.N.G. Pushpakumara, K.V.R. Ramana, P. Vijayanand and J.T. Williams. 2006. Tamarind Tamarindus indica L. Southampton Centre for Underutilised Crops, Southampton, UK, 198 p.
10. Fandohan, A.B, A.E. Assogbadjo, R.L. Glele, B. Sinsin and P. Van Damme. 2010. Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.) populations in the W National Park of Benin. Fruits 65(1): 1-9.
11. Gangaprasad, S., R. Rajkumar, R.L. Ravikumar, M.H. Savita, K. Krishnamurthy and S. Hittalamani. 2013. Genetic diversity analysis in tamarind (Tamarindus indica L.). Journal of Spices and Aromatic Crops 22(1): 55-61.
12. Graf, B., P. Rojas and M. Baldeón. 2016. Discovering the Pharmacological Potential of Ecuadorian Market Plants using a Screens-to-Nature Participatory Approach. Journal of Biodiversity, Bioprospecting & Development 3(1): 1-9.
13. Gunasena, H.P.M. and A. Hughes. 2000. Tamarind - Tamarindus indica L. Fruits for the Future 1. International Center for Underutilised Crops (ICUC), Southampton, UK. 169 p.
14. Khanuja, S.P.S., A.K. Shasany, M.P. Darokar and S. Kumar. 1999. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Molecular Biology Reporter 17(1): 1-7.
15. Kumar, M., V. Ponnuswami, C. Rajamanickam and T.L. Preethi. 2015. Assessment of genetic diversity in tamarind (Tamarindus indica L.) using random amplified polymorphic DNA markers. SAARC Journal of Agriculture 13(1): 27-36.
16. Leakey, R. R. B. and T. Page. 2006. The 'ideotype concept' and its application to the selection of 'AFTP' cultivars. Forest Trees Livelihood 16: 5-16.
17. Nandini, R., T.R. Singh and G.N. Dhanapal. 2011. Morphometric and molecular diversity studies in Tamarind (Tamarindus indica Linn.) population. Journal of Plant Molecular Biology & Biotechnology 2(2): 26-33.
18. Purushotham, B., P. Narayanaswamy, L. Simon, S. Shyamalamma, H. Mahabaleshwar and B. Jayapalogwdu. 2008. Genetic relationship between cultivars of areca nut (Areca catechu L.) determined by RAPD. The Asian and Australasian Journal of Plant Science and Biotechnology 2(1): 31-35.
19. Qian, W., S. Ge and D.Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theoretical and Applied Genetics 102: 440-449.
20. Reddy, M.P., N. Sarla and E.A. Siddiq. 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1): 9-17.
21. Roldan-Ruiz, I., J. Dendauw, E. Van Bockstaele, A. Depicker and M. De Loose. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6(2): 125-134.
22. Sorkheh, K., B. Shiran, T.M. Gradziel, B.K. Epperson, P. Martínez-Gómez and E. Asadi. 2007. Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156(3): 327-344.
23. Tapia-Pastrana, F., P. Mercador-Ruaro and S. Gómez-Acevedo. 2012. Contribución a la citogenética de Tamarindus indica (Leguminosae: Caesalpinioideae). Acta Botánica Mexicana 98: 99-110.
24. Virk, P.S., J. Zhu, H.J. Newbury, G.J. Bryan, M.T. Jackson and B.V. Ford-Lloyd. 2000. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112: 275-284.
25. Ward, J. H. 1963. Hierarchic grouping to optimize an objective function. Journal of American Statistical Association 58(301): 236-239.
26. Zetina, R., A.L. Del Ángel, E.N. Bezerra and M. Rebolledo 2012. Producción sustentable de Tamarindo en el centro de Veracruz. Libro Técnico No. 31. Editorial Alfa y Omega S.A. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Veracruz, México. 174 p.


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

** Back-end Alejandría BE 7.3.0b3 *