Sólo un registro cumplió la condición especificada en la base de información BIOAGRO. ()
Portada
Artículos en éste númeroArtículos en éste número
Autor: Chaparro Tovar, Luis Carlos luischaparro@ucla.edu.ve
Oprima aquí para enviar un correo electrónico a esta dirección; Castillo, Soraya ; Vaillant, Fabrice ; Servent, Adrien ; Dornier, Manuel ; Castillo, Soraya ; Vaillant, Fabrice ; Servent, Adrien ; Dornier, Manuel
Título: EFECTO DE LA MICROFILTRACIÓN Y DIAFILTRACIÓN EN EL CONTENIDO DE CAROTENOIDES Y COMPUESTOS AROMÁTICOS DEL JUGO DE SANDÍA (Citrullus lanatus L.).
EFFECT OF MICROFILTRATION AND DIAFILTRATION ON CAROTENOID AND AROMATIC COMPOUNDS OF WATERMELON JUICE (Citrullus lanatus L.)
ISSN: 1316-3361
Fecha: 2017
Páginas/Colación: pp. 185-196
En:/ BIOAGRO Vol 29 Nro.3 Septiembre - Diciembre 2017
Información de existenciaInformación de existencia
Categoría Temática: Palabras: AGR01 AGR01
Palabras Claves del Autor: Palabras: AROMAS AROMAS, Palabras: ENZIMAS ENZIMAS, Palabras: FRACCIÓN RETENIDA FRACCIÓN RETENIDA, Palabras: MEMBRANAS MEMBRANAS
Documentos asociados
Oprima aquí para visualizar el documento PDF:Documento en formato PDF Documento en formato PDF

RESUMEN
Los carotenoides son un grupo de pigmentos naturales presentes en frutas y hortalizas con alta capacidad antioxidante, y además son precursores de la formación de aromas específicos. El objetivo del trabajo fue evaluar la distribución de carotenoides y compuestos aromáticos del jugo de sandía durante operaciones secuenciales de microfiltración y diafiltración. Los ensayos de microfiltración se realizaron en jugo con tratamiento enzimático previo, empleando una membrana de 0,8 µm a una presión promedio de 0,1 MPa, temperatura de 50 ºC y velocidad de flujo de 6,0 m·s-1, con 2 L de volumen de alimentación constante. Seguidamente se realizó un proceso de diafiltración del retenido utilizando agua potable. Se determinó la concentración de ß-caroteno, isómeros trans y cis licopeno, sólidos solubles totales (SST), pH, acidez titulable, materia seca total y componentes aromáticos en las corrientes derivadas del proceso. El flujo promedio obtenido en la etapa de microfiltración fue de 114 L·h-1·m-2 a un factor de reducción volumétrica (FRV) de 10. La concentración de licopeno en el retenido luego de la microfiltración fue de 657±40 mg·kg-1. La etapa de diafiltración redujo los SST hasta 11,1±0,3 g·kg-1. El tratamiento enzimático no influyó en la composición de los compuestos aromáticos del jugo, sin embargo del proceso de microfiltración y diafiltración se obtuvieron corrientes con una distribución de compuestos aromáticos diferentes al jugo fresco.
Palabras clave adicionales: Aromas, enzimas, membranas, fracción retenida

ABSTRACT
Carotenoids are a group of natural pigments of fruits and vegetables with high antioxidant capacity, and are also precursors to the formation of specific aromas. The objective of this work was to evaluate the distribution of carotenoids and aromatic compounds of watermelon juice during sequential microfiltration and diafiltration operations. The microfiltration tests were performed in juice with previous enzymatic treatment, using a membrane of 0.8 µm at an average pressure of 0.1 MPa, temperature of 50 °C and flow velocity of 6.0 m·s-1, with 2 L constant feed volume. A retention diafiltration process was then performed using potable water. The concentration of ß-carotene, trans and cis-lycopene isomers, total soluble solids (SST), pH, titratable acidity, total dry matter and aromatic components were determined in all streams derived from the process. The average flow obtained in the microfiltration stage was 114 L·h-1·m-2 at a volumetric reduction factor of 10. The concentration of lycopene in the retentate after the microfiltration was 657±40 mg·kg-1. The diafiltration step reduced the SST to 11.1±0.3 g·kg-1. The enzymatic treatment did not influence the composition of the aromatic compounds of the juice; however, from the microfiltration and diafiltration processes currents were obtained with a distribution of aromatic compounds different from the fresh juice.
Additional key words: Enzymes, fragance, membranes, retentate

REFERENCIAS BIBLIOGRAFICAS
1. Aguiló-Aguayo, I., M. Montero-Calderón, R. Soliva-Fortuny y O. Martín-Belloso. 2010. Changes on flavor compounds throughout cold storage of watermelon juice processed by high-intensity pulsed electric fields or heat. Journal of Food Engineering 100(1): 43-49.
2. Anese, M., G. Mirolo, A. Fabbro, y G. Lippe. 2013. Lycopene bioaccessibility and bioavailability from processed foods. Journal of Scientific & Industrial Researche 72(9-10): 543-547.
3. AOAC. 1990. Association of Official Analytical Chemist. Official Methods of Analysis. Washington, USA.
4. Beaulieu, J. y L. Jeanne. 2006. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. Journal of Agricultural and Food Chemistry 54(20): 7789-7793.
5. Boon, C., D. McClements, D. Julian, J. Weiss, y E. Decker. 2010. Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition 50(6): 515-532.
6. Cruz, A., R. Mattietto, C. Taxi, C. Araújo, L. Cabral, C. Donangelo, y V. da Matta. 2011. Effect of microfiltration on bioactive components and antioxidant activity of açaí (Euterpe oleracea Mart.). Desalination and Water Treatment 27: 97-102.
7. Cruz-Bojórquez, R., J. González-Gallego y P. Sánchez-Collado. 2013. Propiedades funcionales y beneficios para la salud del licopeno. Nutrición Hospitalaria 28(1): 6-15.
8. Chhaya, Ch., P. Rai, G. Majumdar, S. Dasgupta y S. De. 2008. Clarification of watermelon (Citrullus lanatus) juice by microfiltration. Journal of Food Process Engineering 31(6): 768-782.
9. Dahdouh, L., C. Wisniewski, A. Kapitan-Gnimdu, A. Servent, M. Dornier y M. Delalonde. 2015. Identification of relevant physicochemical characteristics for predicting fruit juices filterability. Separation and Purification Technology 141: 59-67.
10. De Abreu, F., M. Dornier, A. Dionisio, M. Carail, C, Caris-Veyrat, y C. Dhuique-Mayer. 2013. Cashew apple (Anacardium occidentale L.) extract from by-product of juice processing: a focus on carotenoids. Food Chemistry 138(1): 25-31.
11. De Oliveira, R., R. Docê, y S. de Barros. 2012. Clarification of passion fruit juice by microfiltration: analyses of operating parameters, study of membrane fouling and juice quality. Journal of Food Engineering 111(2): 432-439.
12. Demiray, E., Y. Tulek y Y. Yilmaz 2013. Degradation kinetics of lycopene, ß-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Science and Technology 50(1): 172-176.
13. Dhuique-Mayer, C., M. Tbatou, M. Carail, C. Caris-Veyrat, M. Dornier, y M. Amiot. 2007. Thermal degradation of antioxidant micro-nutrient in citrus juice: kinetic and newly formed compounds. Journal of Agricultural and Food Chemistry 55(10): 4209-4216.
14. Dizge, N., G. Soydemir, A. Karagunduz y B. Keskinler. 2011. Influence of type and pore size of membranes on cross flow micro-filtration of biological suspension. Journal of Membrane Science 366(1-2): 278-285.
15. García-Rujano, T., A. Torres, I. Escobar y R. Betancourt. 2014. Efecto del proceso de microfiltracion tangencial sobre las caracteristicas físicas y químicas del jugo de mango clarificado. Agrollanía 11: 29-36. 16. Gomes, F., P. Costa, M. Campos, R. Tonon, S. Couri y L. Cabral. 2013. Watermelon juice pretreatment with microfiltration process for obtaining lycopene. International Journal of Food Science & Technology 48(3): 601-608.
17. Kobori, C., R. Wagner, M. Padula, y D. Rodríguez-Amaya. 2014. Formation of volatile compounds from lycopene by autoxidation in a model system simulating dehydrated foods. Food Research International 63(Part A): 49-54.
18. Lewinsohn, E., Y. Sitrit, E. Bar, Y. Azulay, M. Ibdah, M. Ayala et al. 2005. Not just colors-carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends in Food Science & Technology 16(9): 407-415.
19. Liu, C., H. Zhang, Z. Dai, X. Liu, Y. Liu, X. Deng et al. 2012. Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris Schrad (Cucurbitaceae)] with different flesh colors. Food Science and Biotechnology 21(2): 531-541.
20. Meret, M., P. Brat, C. Mertz, M. Lebrun, y Z. Günata. 2011. Contribution to aroma potential of Andean blackberry (Rubus glaucus Benth.). Food Research Internationa 44(1): 54-60.
21. Padda, M., C. do Amarante, R. García, D. Slaughter, y E. Mitcham. 2011. Methods to analyze physico-chemical changes during mango ripening: a multivariate approach. Postharvest Biology and Technology 62(3): 267-274.
22. Paulen, R., M. Jelemenský, M. Fikar, y Z. Kovács. 2013. Optimal balancing of temporal and buffer costs for ultrafiltration/diafiltration processes under limiting flux conditions. Journal of Membrane Science 444: 87-95.
23. Perkins-Veazie, P. y J.K Collins. 2004. Flesh quality and lycopene stability of fresh-cut watermelon. Postharvest, Biology and Technology 31(2): 159-166.
24. Quek, S., N. Chok y P. Swedlund. 2007. The physicochemical properties of spray-dried watermelon powders. Chemical, Engineering and Processing 46(5): 386-392.
25. Rai, C., P. Rai, G. Majumdar, S. De y S. Das Gupta. 2010. Mechanism of permeate flux decline during microfiltration of watermelon (Citrullus lanatus) juice. Food and Bioprocess Technology 3(4): 545-553.
26. Restrepo-Gallego, M. 2007. Sustitución de colorantes en alimentos. Revista Lasallista de Investigación 4(1): 35-39.
27. Sharma, R., D. Kaur, D. Oberoi y D. Sogi. 2008. Thermal degradation kinetics of pigments and visual color in watermelon juice. International Journal of Food Properties 11(2): 439-449.
28. Shi, X., Y. Xu, Y, Li, H. Zeng y Y. Sun. 2011. Optimization of extraction process of lycopene from watermelon (Citrullus lanatus) by response surface methodology. Applied Mechanics and Materials 140: 385-393.
29. Tarazona-Díaz, M. y E. Aguayo. 2013a. Influence of acidification, pasteurization, centrifugation and storage time and temperature on watermelon juice quality. Journal of the Science of Food and Agriculture 93(15): 3863-3869.
30. Tarazona-Díaz, M., F. Alacid, M. Carrasco, I. Martínez y E. Aguayo. 2013b. Watermelon juice: potential functional drink for sore muscle relief in athletes. Journal of Agricultural and Food Chemistry 61(31): 7522-7528.
31. Tarazona-Díaz, M., J. Viegas, M. Moldao-Martins, y E. Aguayo. 2011. Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars. Journal of Science of Food and Agriculture 91(5): 805-812.
32. Tlili, I., C. Hdider, M. Salvatore, I. Riadh, H. Jebari, y G. Dalessandro. (2011). Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area. Journal of Food Composition and Analysis 24: 307-314.
33. Vaillant, F., M. Cisse, M. Chaverri, A. Perez, M. Dornier, F. Viquez, y C. Dhuique-Mayer. 2005. Clarification and concentration of melon juice using membrane processes. Innovative Food Science & Emerging Technologies 6(2): 213-220.
34. Van Buggenhout, S., M. Alminger, L. Lemmens, I. Colle, G. Knockaert, K. Moelants, et al. 2010. In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science & Technology 21(12): 607-618.
35. Wang, X., W. Liu, Z. Yan, S. Zhao, N. He, P. Liu, y J. Dai. 2011. Changes of the contents of functional substances including lycopene, citrulline and ascorbic acid during watermelon fruits development. Scientia Agricultura Sinica 44(13): 2738-2747.
36. Wen'en, Z., L. Pin, y G. Huihui. 2013. Studies on carotenoids in watermelon flesh. Agricultural Sciences 4(7A): 13-20.


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

** Back-end Alejandría BE 7.3.0b3 *