Sólo un registro cumplió la condición especificada en la base de información BIOAGRO. ()
Portada
Artículos de éste númeroArtículos de éste número
Autor: Silva Díaz, Rubén J. ; García Mendoza, Pedro J. ; Velásquez Faleiro y Silva, Diego ; Lopes de Souza Junior, Cláudio ; García Mendoza, Pedro J. ; Velásquez Faleiro y Silva, Diego ; Lopes de Souza Junior, Cláudio
Título: EPISTASIS PARA PRODUCCIÓN DE GRANOS Y CARACTERES DE LA PLANTA EN UNA POBLACIÓN DE MAÍZ TROPICAL
Epistasis for grain yield and plant traits in a tropical maize population
ISSN: 1316-3361
En:/ BIOAGRO Vol 29 Nro.2 Mayo - Agosto 2017
Información de existenciaInformación de existencia
Documentos asociados
Oprima aquí para visualizar el documento PDF:Documento en Formato PDF Documento en Formato PDF

RESUMEN
En maíz, estudios sobre la importancia de la epistasis en la herencia de caracteres cuantitativos han mostrado resultados contradictorios; por lo tanto, es de gran relevancia determinar la influencia de los efectos epistáticos involucrados en la herencia de esos caracteres en el cultivo. En tal sentido, esta investigación fue desarrollada para (a) detectar la presencia de epistasis, (b) confirmar la importancia de la interacción epistasis por ambientes y (c) estimar los efectos epistáticos en plantas F2 para producción de granos y caracteres de la planta utilizando el diseño triple test cross en una población de maíz tropical formada a partir de dos líneas genéticamente divergentes. Cien progenies F2:3 retrocruzadas a ambas líneas parentales y a la F1 fueron evaluadas en once ambientes. La epistasis fue detectada para todos los caracteres, con excepción del acame total. Para producción de granos, altura de planta e intervalo entre florecimientos la epistasis del tipo aditiva x dominante y/o dominante x dominante fue más importante que la epistasis aditiva x aditiva; mientras, para altura de mazorca, posición relativa de la mazorca y floración masculina y femenina, ambos tipos de epistasis fueron importantes. La interacción epistasis con ambientes fue significativa para la floración femenina e intervalo entre florecimientos. Fueron identificados efectos epistáticos no-unidireccionales significativos en plantas F2 para todos los caracteres. Los resultados sugieren que, en la población estudiada, la epistasis constituye un componente importante de la varianza genética; por consiguiente, el modelo aditivo dominante no es suficiente para describir la variación genética de los caracteres estudiados.
Palabras clave adicionales: Caracteres cuantitativos, interacciones no alélicas, triple test cross, Zea mays

ABSTRACT
Epistasis for grain yield and plant traits in a tropical maize population In maize, studies on the importance of epistasis in the inheritance of quantitative traits have shown contradictory results; therefore, is of great importance to determine the influence of epistatic effects involved in the inheritance of these characters in the crop. Thus, this research was conducted to (a) to verify the presence of epistasis, (b) to verify the importance of epistasis by environment interaction and (c) to estimate epistatic effects in plants F2 for grain yield and plant traits using the triple test cross design in a tropical maize population developed from two inbred lines genetically divergent. One hundred F2:3 progenies backcrossed to both parental lines and F1 were evaluated in eleven environments. Epistasis was detected for all traits, except for root and stalk lodging. For grain yield, plant height and anthesis-silking interval the additive x dominance and/or dominance x dominance epistasis were more important than additive x additive epistasis; however, for ear height, ear placement, days to anthesis and days to silk emergence, both types of epistasis were important. Epistasis by environment interaction was significant for days to silk emergence and anthesis-silking interval. Significant epistatic non-unidirectional effects were identified in F2 plants for all traits. The results suggest that, in the studied population, epistasis is an important component of genetic variance; therefore, the dominant additive model is not sufficient to describe the genetic variation of the studied traits.
Additional key words: Non allelic interactions, triple test cross, quantitative traits, Zea mays

REFERENCIAS BIBLIOGRÁFICAS
1. Aguiar, A., L. Carlini-Garcia, A. Resende, M. Santos, A. Garcia y C. de Souza Júnior. 2003. Combining ability of inbred lines of maize and stability of their respective single-crosses. Scientia Agrícola 60: 83-89.
2. Barona, M., J. Colombari Filho e I. Geraldi. 2012. Epistatic effects on grain yield of soybean [Glycine max (L.) Merrill]. Crop Breeding and Applied Biotechnology 12: 231-236.
3. Bernardo, R. 2002. Breeding for Quantitative Traits in Plants. Stemma Press. Woodbury, MN, USA. 369 p.
4. Bhatti, M., F. Azhar, A. Alvi y M. Ayub. 2006. Triple test cross analysis of seed Cotton (Gossypium hirsutum L.) yield and its components grown in salinized conditions. International J of Agric and Biol. 8: 820-823.
5. Bocianowski, J. 2014. Estimation of epistasis in doubled haploid barley populations considering interactions between all possible marker pairs. Euphytica 196: 105-115.
6. Comstock, R. E. y H. F. Robinson. 1952. Estimation of average dominance of genes. In: J.W. Gowen (ed.). Heterosis. Iowa State College Press. Ames. pp. 494-516 p.
7. Darrah, L. L. y A.R. Hallauer. 1972. Genetic effects estimated from generation means four diallel sets of maize inbreds. Crop Science 12: 615-616.
8. Durand, E., S. Bouchet, P. Bertin, A. Ressayre, P. Jamin, A. Charcosset et al. 2012. Flowering time in maize: Linkage and epistasis at a major effect locus. Genetics 190: 1547-1562.
9. Eta-Ndu, J. T. y S. J. Openshaw. 1999. Epistasis for grain yield in two F2 populations of maize. Crop Sci. 39: 346-352.
10. Hinze, L. L. y K. R. Lamkey. 2003. Absence of epistasis for grain yield in elite maize hybrids. Crop Sci. 43: 46-56.
11. Hallauer, A.R. 2007. History, contribution, and future of quantitative genetics in plant breeding: lessons from maize. Crop Sci. 47: 4-19.
12. Hallauer, A.R. y E. López-Pérez. 1979. Comparisons among testers for evaluating lines of corn. Annual Hybrid Corn Industry Research Conference, Chicago. Proceedings 34: 57-75.
13. Haq, M. I., S. Ajmal, N. Kamal, S. Khanum, M. Siddique y M.Z. Kiani. 2013. Generation mean analysis for grain yield in maize. The Journal of Animal & Plant Sciences 23(4): 1146-1151.
14. Iqbal, M., K. Khan, H. Rahman y H. Sher. 2010. Detection of epistasis for plant height and leaf area per plant in maize (Zea mays L.) from generation analysis. Maydica 55: 33-39.
15. Jiang, L., M. Ge, H. Zhao y T. Zhang. 2015. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. PLoS One 10(4): e0124779.
16. Kearsey, M.J. y J.L. Jinks. 1968. A general method of detecting additive, dominance and epistatic variation for metrical traits. Heredity 23: 403-409.
17. Kearsey, M.J. y H.S. Pooni. 1998. The genetical analysis of quantitative traits. Stanley Thones. London. 381 p.
18. Ketata, H., E.L. Smith, L.H. Edwards y R.W. Mcnew. 1976. Detection of epistatic, additive, and dominance variation in winter wheat (Triticum aestivum L.). Crop Sci. 16:1-4.
19. Khattak, G.S., M.A. Haq, M. Ashraf y T. Mcneilly. 2001. Genetic basis of variation of yield, and yield components in mungbean (Vigna radiate (L.) Wilczek). Hereditas 134: 211-217.
20. Khattak, G.S., M.A. Haq, M. Ashraf, A.J. Khan y R. Zamir. 2002. Genetic architecture of secondary yield components in mungbean (Vigna radiate (L.) Wilczek). Breed Sci. 52: 235-241.
21. Liu, Y., L. Wang, C. Sun, Z. Zhang, Y. Zheng y F. Qiu. 2014. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor. Appl. Genet. 127: 1019-1037.
22. Mather, K. y L. Jinks. 1971. Biometrical Genetics. The Study of Continuous Variation. Chapman and Hall. London.
23. Mihaljevic, R., U.F. Utz y A.E. Melchinger. 2005. No evidence for epistasis in hybrid and per se performance of elite European flint maize inbreds from generation means and QTL analyses. Crop Sci. 45: 2605-2613.
24. Moreto, A.L., M.A. Ramalho y A.T. Bruzi. 2011. Epistasis in an Andean x Mesoamerican cross of common bean. Euphytica 186: 755-760.
25. Nehvi, F.A., A.M. Iqbal, S.A. Wani, A.A. Lone y M. A. Khan. 2009. Triple test cross analysis in maize (Zea mays L.) Crop Improvement 36: 25-28.
26. Saleem, M Y., B.M. Atta, A.A. Cheema y M.A. Haq. 2005. Genetics of panicle-related traits of agronomic importance in rice through triple test cross analysis. Spain J. Agric. Res. 3: 402-409.
27. Santos, M.F., G.V. Môro, A.M. Aguiar y C.L. de Souza Júnior. 2005. Responses to reciprocal recurrent selection and changes in genetic variability in IG-1 and IG-2 maize populations. Genet Mol. Biol. 28: 781-788.
28. Satterthwaite, F.E. 1946. An approximate distribution of estimates of variance components. Biom Bull 2: 110-114.
29. Shahrokhi, M., S.K. Khorasani y A. Ebrahimi. 2013. Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International journal of Agronomy and Plant Production 4(3): 405-412.
30. Silva, D.V. 2011. Epistasia em testecrosses de milho. Tesis. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. 88 p.
31. Singh, S. y B. Gupta. 2008. Triple test cross analysis to detect of epistasis for morpho-physiological traits related to drought tolerance and yield components in maize (Zea mays L.). J. of Res. 7: 202-209.
32. Sofi, P.A. 2007. Genetic analysis of tassel and ear characters in maize (Zea mays L.) using triple test cross. Asian J. Plant Sci. 6: 881-883.
33. Sofi, P., A.G. Rather y S. Venkatesh. 2006. Triple test cross in maize (Zea mays L.). Indian J. Crop. Sci. 1: 191-193.
34. Stuber, C.W. y R.H. Moll. 1971. Epistasis in Maize (Zea mays L.). II: Comparison of Selected with Unselected Populations. Genetics 67: 137-149.
35. Rawlings, J.O. y C.C. Cockerham. 1962a. Triallele analysis. Crop Sci. 2: 228-231.
36. Rawlings, J.O. y C.C. Cockerham. 1962b. Analysis of double cross hybrid populations. Biometrics 18: 229-244.
37. Wolf, P. y A.R. Hallauer. 1997. Triple testcross analysis to detect epistasis in maize. Crop Sci. 37: 763-770.
38. Yu, J. y R. Bernardo. 2004. Changes in genetic variances during advanced cycle breeding in maize. Crop Sci 44: 405-410.
39. Zafar, M., S.A. Khan, A. M. Chowdhry y A. M. Bhatti. 2008. Triple test cross analysis for salinity tolerance in wheat. Pakistan Journal of Agricultural Sciences 45(3): 40-43.
40. Zhang, Z., Z. Liu, Y. Hu, W. Li, Z. Fu, D. Ding, H. Li, M. Qiao, y J. Tang. 2014 QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One 9: e89645.


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

** Back-end Alejandría BE 7.3.0b3 *